Normality-based validation for crisp clustering
نویسندگان
چکیده
منابع مشابه
Density-Based Clustering Validation
One of the most challenging aspects of clustering is validation, which is the objective and quantitative assessment of clustering results. A number of different relative validity criteria have been proposed for the validation of globular, clusters. Not all data, however, are composed of globular clusters. Density-based clustering algorithms seek partitions with high density areas of points (clu...
متن کاملEntropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملFuzzification of Agglomerative Hierarchical Crisp Clustering Algorithms
User generated content from fora, weblogs and other social networks is a very fast growing data source in which different information extraction algorithms can provide a convenient data access. Hierarchical clustering algorithms are used to provide topics covered in this data on different levels of abstraction. During the last years, there has been some research using hierarchical fuzzy algorit...
متن کاملEfficient Prediction-Based Validation for Document Clustering
Recently, stability-based techniques have emerged as a very promising solution to the problem of cluster validation. An inherent drawback of these approaches is the computational cost of generating and assessing multiple clusterings of the data. In this paper we present an efficient prediction-based validation approach suitable for application to large, high-dimensional datasets such as text co...
متن کاملComparison of Internal Clustering Validation Indices for Prototype-Based Clustering
Clustering is an unsupervised machine learning and pattern recognition method. In general, in addition to revealing hidden groups of similar observations and clusters, their number needs to be determined. Internal clustering validation indices estimate this number without any external information. The purpose of this article is to evaluate, empirically, characteristics of a representative set o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition
سال: 2010
ISSN: 0031-3203
DOI: 10.1016/j.patcog.2009.09.018